Abstract

The in-plane magnetic anisotropy in Ni/FeMn and Ni 90Fe 10/FeMn exchange-biased bilayers prepared by co-evaporation under molecular beam epitaxy conditions is investigated employing longitudinal magneto-optical Kerr effect (MOKE) and ferromagnetic resonance (FMR). The exchange anisotropy was induced by a magnetic field cooling immediately after the deposition of the bilayers. Besides the induced term, the presence of an additional uniaxial anisotropy in the FM layers was detected both by MOKE and FMR, and the characteristic directions of these two anisotropy terms are not coincident. The interplay between the anisotropy contributions is discussed considering micromagnetic simulations and the in-plane resonance condition for different magnetic field orientation. X-ray diffraction, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy were used to complement the characterization of the samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call