Abstract

To further enhance performance of in-line XPS metrology we will demonstrate the benefit of an unsupervised machine learning approach to increase precision of critical metal gate film thickness measurements and quantification of doping concentration within source-drain junctions. Unsupervised ML efficiently separates process information from inherent noise in the XPS spectra to enable a noise-filtering that improves result precision. The observed precision improvements were utilized to increase wafer through-put by reducing the acquisition time while preserving precision, accuracy, and sensitivity when supporting high volume manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.