Abstract
Stimuli-responsive hydrogel actuators have promising applications in various fields. However, the typical hydrogel actuation relies on the swelling and de-swelling process caused by osmotic-pressure changes, which is slow and normally requires the presence of water environment. Herein, we report a light-powered in-air hydrogel actuator with remarkable performances, including ultrafast motion speed (up to 1.6 m/s), rapid response (as fast as 800 ms) and high jumping height (~15 cm). The hydrogel is operated based on a fundamentally different mechanism that harnesses the synergetic interactions between the binary constituent parts, i.e. the elasticity of the poly(sodium acrylate) hydrogel, and the bubble caused by the photothermal effect of the embedded magnetic iron oxide nanoparticles. The current hydrogel actuator exhibits controlled motion velocity and direction, making it promising for a wide range of mobile robotics, soft robotics, sensors, controlled drug delivery and other miniature device applications.
Highlights
Stimuli-responsive hydrogel actuators have promising applications in various fields
We propose a high performance in-air hydrogel actuator, which is composed of a binary iron oxide nanoparticle (IONP, i.e. Fe3O4NP) and poly(sodium acrylate) (PAANa) hydrogel composite
The extraordinary performance of the current hydrogel actuator is realized by harnessing the synergetic interactions between the elasticity of the hydrogel and the bubble caused by the photothermal effect of the embedded IONPs
Summary
Stimuli-responsive hydrogel actuators have promising applications in various fields. the typical hydrogel actuation relies on the swelling and de-swelling process caused by osmotic-pressure changes, which is slow and normally requires the presence of water environment. Among others, when irradiating the bottom part, the hydrogel actuator exhibits the jumping motion, as shown in Fig. 1h and Supplementary Video 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.