Abstract

Shape-programmable hydrogel-based soft actuators that can adaptively respond to external stimuli are of paramount significance for the development of bioinspired aquatic smart soft robots. Herein, we report the design and synthesis of near-infrared (NIR) light-driven hydrogel actuators through in situ photopolymerization of poly(N-isopropylacrylamide) (PNIPAM) hydrogels loaded with metal-organic frameworks (MOFs) onto the surface of the poly(dimethylsiloxane) (PDMS) thin film. The MOFs can not only function as an excellent photothermal nanotransducer but also accelerate the adsorption/desorption of water due to their porous nanostructure, which speeds up the response rate of the actuators. Shape-programmable hydrogel actuators are fabricated by tailoring the patterning of PDMS thin film, and thus different shape-morphing modes such as directional bending and chiral twisting are observed under the NIR light irradiations. As the proof-of-concept demonstrations, an artificial hand, biomimetic mimosa, and flower are conceptualized with light-driven MOF-containing hydrogel actuators. Interestingly, we are able to achieve an octopus-inspired light-driven soft swimmer upon cyclic NIR illumination due to the fast photoresponsiveness of as-prepared hydrogel actuators. This work can offer insights for fabricating programmable and reconfigurable smart aquatic soft actuators, thus shining a light into their potential applications in emerging fields including soft robots, biomedical devices, and beyond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.