Abstract
The spatial accuracy of unmanned aerial vehicles (UAVs) and the images they capture play a crucial role in the mapping process. Researchers are exploring solutions that use image-based techniques such as structure from motion (SfM) to produce topographic maps using UAVs while accessing locations with extremely high accuracy and minimal surface measurements. Advancements in technology have enabled real-time kinematic (RTK) to increase positional accuracy to 1–3 times the ground sampling distance (GSD). This paper focuses on post-processing kinematic (PPK) of positional accuracy to achieve a GSD or better. To achieve this, precise satellite orbits, clock information, and UAV global navigation satellite system observation files are utilized to calculate the camera positions with the highest positional accuracy. RTK/PPK analysis is conducted to improve the positional accuracies obtained from different flight patterns and altitudes. Data are collected at altitudes of 80 and 120 meters, resulting in GSD values of 1.87 cm/px and 3.12 cm/px, respectively. The evaluation of ground checkpoints using the proposed PPK methodology with one ground control point demonstrated root mean square error values of 2.3 cm (horizontal, nadiral) and 2.4 cm (vertical, nadiral) at an altitude of 80 m, and 1.4 cm (horizontal, oblique) and 3.2 cm (vertical, terrain-following) at an altitude of 120 m. These results suggest that the proposed methodology can achieve high positional accuracy for UAV image georeferencing. The main contribution of this paper is to evaluate the PPK approach to achieve high positional accuracy with unmanned aerial vehicles and assess the effect of different flight patterns and altitudes on the accuracy of the resulting topographic maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.