Abstract

This study demonstrates the preparation of a renewable and biocompatible hydrogel with superior mechanical properties consisting of a gelatin matrix cross-linked with oxidized cellulose nanowhiskers. We found an increased degree of chemical cross-linking (0.14–17%) between gelatin and nanowhiskers with the increased amount of aldehyde contents (0.062–0.230mmolg−1). 1H nuclear magnetic resonance (NMR) T2 relaxation experiments on D2O swollen hydrogels demonstrated systems consisting of both gelatin and cellulose nanowhiskers displayed a higher percentage of “ridge” protons, attributed in part to increasing chemical cross-linking junction points between gelatin and nanowhiskers. This increase in hydrogel rigidity not only modified local chain dynamics but also influenced gel swelling, showing relatively reduced water uptake ability than that of the neat gelatin. Rheological measurements confirmed a 150% improvement in storage modulus (G′) of the cross-linked hydrogels compared to neat gelatin. Chemical cross-linking also increased the resistance of the gels towards thermal degradation above the melting temperature of gelatin as observed by thermal scanning experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.