Abstract
Research on new conservation treatments for historical wood requires considerable amounts of appropriate wood material, which is hard to acquire. Thus, we produced biologically and chemically degraded model wood that could be used as a representative material in future research on consolidating agents. Using chemical composition determinations, we found that fungal decay targeted mainly polysaccharides, while alkaline treatment mostly reduced hemicelluloses and lignin content. X-ray and neutron scattering showed that all decayed samples had increased disorder in microfibril alignment and larger elementary fibril cross-sections, and alkaline-treated samples had much larger elementary fibril spacing compared to those decayed by fungi. These nanoscale and chemical differences correlate with physical property changes. For example, decreased cellulose crystallinity and increased disorder of the microfibrils in degraded cell walls likely contribute to the lower elastic moduli measured for these cell walls. The obtained data improves understanding of how degradation alters wood structures and properties across length scales and will be valuable for future studies focusing on archeological wood. Moreover, it leads to the conclusion that it is more appropriate to develop treatments that consider not only spatial variability and degree of wood degradation but also the corresponding molecular and nanoscale changes in the cell walls.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.