Abstract

We present several improvements to the standard Trotter-Suzuki based algorithms used in the simulation of quantum chemistry on a quantum computer. First, we modify how Jordan-Wigner transformations are implemented to reduce their cost from linear or logarithmic in the number of orbitals to a constant. Our modification does not require additional ancilla qubits. Then, we demonstrate how many operations can be parallelized, leading to a further linear decrease in the parallel depth of the circuit, at the cost of a small constant factor increase in number of qubits required. Thirdly, we modify the term order in the Trotter-Suzuki decomposition, significantly reducing the error at given Trotter-Suzuki timestep. A final improvement modifies the Hamiltonian to reduce errors introduced by the non-zero Trotter-Suzuki timestep. All of these techniques are validated using numerical simulation and detailed gate counts are given for realistic molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.