Abstract
An increasing penetration of renewable generation has led to reduced levels of rotational inertia and damping in the power network. The consequences are higher vulnerability to disturbances and deterioration of the dynamic response of the system. To overcome these challenges, novel converter control schemes that provide virtual inertia and damping have been introduced, which raises the question of optimal distribution of such devices throughout the network. This paper presents a comprehensive framework for performance-based allocation of virtual inertia and damping to the converter-interfaced generators in a detailed low-inertia system. This is achieved through an iterative, eigensensitivity-based optimization algorithm that determines the optimal controller gains while simultaneously preserving small-signal stability and ensuring that the damping ratio and frequency response after disturbances are kept within acceptable limits. Two conceptually different problem formulations are presented and validated on a modified version of the well known Kundur's two-area system as well as a larger 59-bus South-East Australian network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.