Abstract

The modern power system is witnessing an unprecedented increase in the penetration of renewable variable generation (VG) sources. Increased uptake of converter interfaced VG like solar PV and wind power while replacing conventional synchronous generators (SGs) introduces new challenges to grid operators in terms of dynamically handling frequency stability and regulation. Reducing the number of SGs while increasing non-synchronous, inertia-less converter interfaced VG reduces grid natural inertia, which is critical for maintaining frequency stability. To cure inertia deficiency, researchers, broadly, have proposed implementing supplemental control strategies to VG sources or energy storage systems to emulate natural inertia (virtual inertia (VI)). Alternatively, VG sources can be operated below their maximum power point (deloaded mode), making available a reserve margin which can rapidly be deployed in case of a contingency with the help of power electronic devices, to provide fast frequency response. This paper reviews recent solutions proposed in literature to address the low inertia problem to improve frequency stability. Additionally, it highlights the formulation of an optimization problem for VI sizing and placement as well as techniques applied in solving the optimization problem. Finally, gaps in literature that require further research were identified

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call