Abstract

Distributed Generation has become a consolidated phenomenon in distribution grids in the last few years. Even though the matter is very articulated and complex, islanding operation of distribution grid is being considered as a possible measure to improve service continuity. In this paper a novel static converter control strategy to obtain frequency and voltage regulation in islanded distribution grid is proposed. Two situations are investigated: in the former one electronic converter and one synchronous generator are present, while in the latter only static generation is available. In both cases, converters are supposed to be powered by DC micro-grids comprising of generation and storage devices. In the first case converter control will realize virtual inertia and efficient frequency regulation by mean of PID regulator; this approach allows to emulate a very high equivalent inertia and to obtain fast frequency regulation, which could not be possible with traditional regulators. In the second situation a Master-Slave approach will be adopted to maximize frequency and voltage stability. Simulation results confirm that the proposed control allows islanded operation with high frequency and voltage stability under heavy load variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.