Abstract

Vacuum impregnation is a non-thermal technique used in food technology to replace the air occluded in the products with specific substances, thus modifying food quality. Here, this technique was employed to allow calcium ions to penetrate more efficiently in the tissue structure of diced tomatoes with consequent increase of the product firmness. Calcification was obtained in two ways, that is, either by keeping diced tomatoes at the reduced pressure of 100 mbar or by subjecting the product to cycles of pulsed vacuum from 1013 mbar to 30 mbar. Both procedures were conducted in the presence of calcium chloride solutions at various concentrations and temperatures. The results showed that the highest firmness was obtained by pulsed vacuum calcification at 30 mbar and 45 °C by using 4 cycles of pulsed vacuum. In these conditions, after two-months storage at room temperature, the treated diced tomatoes packaged in tinplate cans showed firmness increase of about 90% with respect to product not treated by vacuum infiltration. These results indicate the pulsed vacuum calcification as a promising process that can be effectively introduced in some phases of the industrial tomato transformation to improve the product texture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.