Abstract

The implementation of FinFET structure in bulk silicon wafers is very attractive due to low-cost technology and compatibility with standard bulk CMOS in comparison with silicon-on-insulator (SOI) FinFET. SOI and bulk FinFET were analyzed by a three-dimensional numerical device simulator. We have shown that bulk FinFET with source/drain-to-body (S/D) junctions shallower than gate-bottom has equal or better subthreshold performance than SOI FinFET. By reducing S/D junction depth, fin width scaling for suppression of short-channel-effects (SCEs) can be relaxed. On-state performance has also been examined and drain current difference between the SOI and bulk FinFET at higher body doping levels has been explained by investigating enhanced conduction in silicon-oxide interface corners. By keeping the body doping low and junctions shallower than the gate-bottom, bulk FinFET characteristics can be improved with no increase in process complexity and cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.