Abstract

The influence of the plasma excitation frequency on the growth conditions and the material properties of microcrystalline silicon prepared by plasma enhanced chemical vapor deposition at low deposition temperature is investigated. It is found that an increase of the plasma excitation frequency leads to a simultaneous increase of the growth rate, the grain size, and the Hall mobility of microcrystalline silicon. This is attributed to an effective selective etching of disordered material creating more space to develop crystalline grains, while also more species for faster growth of the crystallites are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.