Abstract

ABSTRACTIn doped and undoped microcrystalline silicon prepared with Very High Frequency Glow Discharge, hydrogen is found to be mainly located at the grain boundaries from where it desorbs easily at low annealing temperatures. In undoped material hydrogen evolution peaks are between 400°C and 500°C. Upon doping, a new major peak appears at 300°C and a strong reduction of the typical Si-H infrared absorption bands are found for doped samples when annealed up to 300°C. This is accompanied by an increase of the conductivity due to either de-passivation of dopants in the crystallites or a favourable reconstruction at the grain boundaries. Hydrogen profiles show a hydrogen depletion at the film/air interface that is more profound in doped material, thus correlating with the appearance of the low temperature evolution peak. The high free carrier density in the crystallites of the doped material gives rise to strong optical absorption. Although correlating nicely with conductivity, the free carrier absorption cannot be evaluated simply in terms of die Drude theory. In view of the high conductivities and the dominance of Si-H surface bonds we argue that our material does not contain a large amount of amorphous tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call