Abstract

The maximum wind speed radius of a strong typhoon making landfall is an important factor influencing the numerical forecasting of storm surges. A method for inverting the maximum wind speed radius of typhoons based on wave buoys data was designed to significantly reduce the error in 24 h storm surge forecasting in this paper, and an operation scheme was proposed to enhance the storm surge numerical forecasting system based on this method. Hangzhou Bay and the Yangtze River Estuary, which have been frequently impacted by typhoons over the past five years, were selected as the research area. Common schemes for the maximum wind speed radius were analyzed, and five ladder schemes (10, 15, 20, 25, and 30 km) were established for wave and storm surge numerical model verification of Typhoon Muifa in 2022. Based on a comparison of the wave hindcast results and wave buoys observation data, the wave hindcast result of the commonly used scheme (30 km) was significantly greater than that of the observation data, and the optimal scheme (15 km) closest to the observation data could be determined during the 48 h warning period. Moreover, it was difficult to identify the optimal scheme during the 48 h warning period based on the storm surge hindcast results. A 24 h storm surge numerical forecasting test was performed with the commonly used scheme (30 km) and the optimal scheme (15 km). The results showed that the root mean square error (RMSE) of the optimal scheme (15 km) was 34% lower than that of the commonly used scheme (30 km), while the maximum storm surge error was also reduced from 47.7% for the commonly adopted scheme (30 km) to 11.8% for the optimal scheme (15 km). The maximum storm surges under the optimal scheme (15 km) along Hangzhou Bay and the Yangtze River Estuary ranged from 1.9 to 2.2 m, which were closer to the observation data, and the maximum storm surge under the commonly used scheme (30 km) was 0.8~1.2 m greater than that under the optimal scheme (15 km).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call