Abstract

Sea level rise (SLR) can cause water depth increase (WDI) and coastal inundation (CI). By applying the coupled FVCOM + SWAN model, this study investigates the potential impacts of WDI and CI, induced by a 1.0 m SLR, on storm surge and waves within the Yangtze River Estuary. A 1.0 m WDI decreases the maximum storm surge by 0.15 m and increases the maximum significant wave height by 0.35 m. The CI effect size is smaller when compared with WDI. CI decreases the maximum storm surge and significant wave height by 0.04 and 0.07 m, respectively. In the near-shore area, WDI significantly alters the local hydrodynamic environment, thereby stimulating changes in maximum storm surges and wave heights. Low-lying regions are negatively impacted by CI. Conversely, in deep-water areas, the relative change in water depth is minimal and the effect of CI is gradually enhanced. The combined effect of WDI and CI decreases the maximum surge by 0.31 m and increases the maximum significant wave height by 0.21 m. As a result, CI may be neglected when designing deep-water infrastructures. Nonetheless, the complex interactions between adoption and neglect of CI should be simulated to achieve the best seawall flood control standards and design parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.