Abstract

The high capacity and optimal cycle characteristics of silicon render it essential in lithium-ion batteries. The authors have attempted to realize a composite material by coating individual silicon (Si) particles of a few micrometers in diameter with a silicon oxide film to serve as an active material in the anode and so optimize the charge–discharge characteristics of the lithium-ion battery. Particle coating was achieved using an inductively coupled plasma-chemical vapor deposition (ICP-CVD) process that realized a homogenous coating of silicon oxide film on each Si particle. The film was synthesized based on tetraethyl orthosilicate (TEOS), with hydrogen (H2) gas used as a reducing agent to deoxidize the silicon dioxide. This enabled the control of the silicon oxidation number in the layers produced by adjusting the H2 flow during the silicon oxidization deposition with ICP-CVD. The silicon oxide covering the Si particles included both silicon monoxide and suboxide, which served to optimize the charge–discharge characteristics. The authors have succeeded in realizing a favorable active material using Si which is abundant in nature in the anode of a lithium-ion battery with highly charged, optimized cycle properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.