Abstract

We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1eV (90%confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation.

Highlights

  • We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019

  • In this Letter, we report on the first neutrino mass result from the Karlsruhe Tritium Neutrino experiment KATRIN [17–20], which is targeted to advance the sensitivity on mν by 1 order of magnitude down to 0.2 eV (90% C.L.) after five years

  • Experimental setup.—KATRIN combines a windowless gaseous molecular tritium source (WGTS), pioneered by the Los Alamos experiment [21], with a spectrometer based on the principle of magnetic adiabatic collimation with electrostatic filtering (MAC-E-filter) [22,23], developed at Mainz and Troitsk [24,25]

Read more

Summary

Featured in Physics

Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN M. Aker,1,2 K. Altenmüller,10,3,4 M. Arenz,5 M. Babutzka,6 J. Barrett,7 S. Bauer,8 M. Beck,8,12 A. Beglarian,9 J. Behrens,6,1,8 T. Bergmann,10,3,9 U. Besserer,1,2 K. Blaum,11 F. Block,6 S. Bobien,2 K. Bokeloh,8§ J. Bonn,12,* B. Bornschein,1,2 L. Bornschein,1 H. Bouquet,9 T. Brunst,10,3 T. S. Caldwell,13,14 L. La Cascio,6 S. Chilingaryan,9 W. Choi,6 T. J. Corona,13,14,7 K. Debowski,15,6 M. Deffert,6 M. Descher,6 P. J. Doe,16 O. Dragoun,17 G. Drexlin,6,1† J. A. Dunmore,16 S. Dyba,8 F. Edzards,10,3 L. Eisenblätter,9 K. Eitel,1 E. Ellinger,15 R. Engel,1,6 S. Enomoto,16 M. Erhard,6 D. Eversheim,5 M. Fedkevych,8 A. Felden,1 S. Fischer,1,2 B. Flatt,12 J. A. Formaggio,7 F. M. Fränkle,1,13,14 G. B. Franklin,18 H. Frankrone,9 F. Friedel,6 D. Fuchs,10,3 A. Fulst,8 D. Furse,7 K. Gauda,8 H. Gemmeke,9 W. Gil,1 F. Glück,1 S. Görhardt,1 S. Groh,6 S. Grohmann,2 R. Grössle,1,2 R. Gumbsheimer,1 M. Ha Minh,10,3 M. Hackenjos,1,2,6 V. Hannen,8 F. Harms,6 J. Hartmann,9 N. Haußmann,15 F. Heizmann,6 K. Helbing,15 S. Hickford,1,15 D. Hilk,6 B. Hillen,8 D. Hillesheimer,1,2 D. Hinz,1 T. Höhn,1 B. Holzapfel,2 S. Holzmann,2 T. Houdy,10,3 M. A. Howe,13,14 A. Huber,6 T. M. James,2 A. Jansen,1 A. Kaboth,7 C. Karl,10,3 O. Kazachenko,21 J. Kellerer,6 N. Kernert,1 L. Kippenbrock,16 M. Kleesiek,6∥ M. Klein,1,6 C. Köhler,10,3 L. Köllenberger,1 A. Kopmann,9 M. Korzeczek,6 A. Kosmider,1 A. Kovalík,17 B. Krasch,1,2 M. Kraus,6 H. Krause,1 L. Kuckert,1¶ B. Kuffner,1 N. Kunka,9 T. Lasserre,4,3,10 T. L. Le,1,2 O. Lebeda,17 M. Leber,16 B. Lehnert,19 J. Letnev,20 F. Leven,6 S. Lichter,1 V. M. Lobashev,21,* A. Lokhov,8,21 M. Machatschek,6 E. Malcherek,1 K. Müller,1 M. Mark,1 A. Marsteller,1,2 E. L. Martin,13,14,16 C. Melzer,1,2 A. Menshikov,9 S. Mertens,10,3,19,1 L. I. Minter,16** S. Mirz,1,2 B. Monreal,22 P. I. Morales Guzmán,10,3 K. Müller,1 U. Naumann,15 W. Ndeke,25 H. Neumann,2 S. Niemes,1,2 M. Noe,2 N. S. Oblath,7 H.-W. Ortjohann,8 A. Osipowicz,20 B. Ostrick,8 E. Otten,12,* D. S. Parno,18,16 D. G. Phillips II,13,14 P. Plischke,1 A. Pollithy,10,3 A. W. P. Poon,19 J. Pouryamout,15 M. Prall,8 F. Priester,1,2 M. Röllig,1,2 C. Röttele,1,6,2 P. C.-O. Ranitzsch,8 O. Rest,8 R. Rinderspacher,1 R. G. H. Robertson,16 C. Rodenbeck,8 P. Rohr,9 Ch. Roll,25 S. Rupp,1,2,6 M. Ryšavý,17 R. Sack,8 A. Saenz,25 P. Schäfer,1,2 L. Schimpf,6 K. Schlösser,1 M. Schlösser,1,2 L. Schlüter,10,3 H. Schön,2 K. Schönung,11,1,2 M. Schrank,1 B. Schulz,25 J. Schwarz,1 H. Seitz-Moskaliuk,6 W. Seller,20 V. Sibille,7 D. Siegmann,10,3 A. Skasyrskaya,21 M. Slezák,10,17 A. Špalek,17 F. Spanier,1 M. Steidl,1 N. Steinbrink,8 M. Sturm,1,2 M. Suesser,2 M. Sun,16 D. Tcherniakhovski,9 H. H. Telle,23 T. Thümmler,1,8 L. A. Thorne,18 N. Titov,21 I. Tkachev,21 N. Trost,1 K. Urban,10,3 D. Venos,17 K. Valerius,1,8 B. A. VanDevender,16 R. Vianden,5 A. P. Vizcaya Hernández,18 B. L. Wall,16 S. Wüstling,9 M. Weber,9 C. Weinheimer ,8‡ C. Weiss,24 S. Welte,1,2 J. Wendel,1,2 K. J. Wierman,13,14 J. F. Wilkerson,13,14†† J. Wolf,6 W. Xu,7 Y.-R. Yen,18 M. Zacher,8 S. Zadorozhny,21 M. Zboril,8,17 and G. Zeller1,2

Published by the American Physical Society
Relative uncertainty
Findings
Golden Rule
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.