Abstract
Pullulanase (PulB) is a starch-debranching enzyme. In order to improve its catalytic performance, random mutagenesis was performed on the pullulanase gene derived from Bacillus thermoliquefaciens. Two rounds of error-prone PCR were carried out. Mutant T252S was screened in the first round of error-prone library, which had the highest catalytic activity. During the second round of mutations, mutant enzyme G250P/T252S/G253T/N255K was screened, which had further improved catalytic activity and the best thermostability. Compared with the parent enzyme, the specific activity of mutant enzyme G250P/T252S/G253T/N255K increased by 1.9 times, Km decreased by 22.7 %, kcat increased by 28.7 %, and kcat/Km increased by 68.4 %. The thermostability of the mutant enzyme improved significantly, showing that the half-life at 60 °C was extended to 7.5 h, which was 87.5 % higher than that of the parent enzyme. The mutation sites in these two rounds were concentrated in the 250–255 regions, indicating that this region was an important region affecting the catalytic activity and Thermostability. The reasons for the change of enzymtic properties was also preliminarily analyzed through three-dimensional simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.