Abstract

Directed evolution was used to enhance the catalytic activity of E. coli alkaline phosphatase (EAP). Through two rounds of error-prone PCR and one round of DNA shuffling followed by a rapid, sensitive screening procedure, several improved variants were obtained. Their enzymatic kinetic properties, thermal stabilities and possible mechanism for the improvement were investigated. In 1.0 M Tris buffer, the specific activity of the most active EAP variant S2163 was 1500 units/mg protein, showing it to be 3.6 times more active than the D101S parent enzyme and ∼40 times more active than the wild-type EAP. At the same time, the Km value of the S2163 variant decreased to 1491 μM from the 2384 μM of the D101S. As a result, the kcat/Km ratio of this variant showed a 5.8-fold enhancement over that of D101S parent enzyme. Three activating amino acid substitutions, K167R, G180S and S374C, which were located far away from the center of the catalytic pocket, were identified by sequencing the genes encoding evolved enzymes. Possible explanations for the improvement of activity were analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call