Abstract

Small semiconductor structures often exhibit "telegraph noise". If the number of charge carriers is small, then spontaneous changes in the number of carriers can lead to abrupt switching between two or more discrete levels, leading to burst noise or popcorn noise in transistors. We have observed similar behavior in the fluorescence of organic semiconductor nanoparticles, where typical carrier populations are often less than ∼10 carriers per nanoparticle. Spontaneous changes in the number of charges results in abrupt switching between 2 or more fluorescence intensity levels, because the charges act as highly efficient fluorescence quenchers. The equilibrium number of charges is determined by competition between a photodriven ionization process and spontaneous recombination. Doping with redox-active molecules also affects the balance. Nanoparticles of the conjugated polymer PFBT doped with the fullerene derivative PCBM, rapidly establish a fluctuating steady-state population of tens of hole polaron charge carriers, sufficient to nearly completely suppress nanoparticle fluorescence. However, fluctuations in the number of charges lead to occasional bursts of fluorescence. This spontaneous photoswitching phenomenon can be exploited for superresolution imaging. The repeated, spontaneous generation of short, intense bursts of fluorescence photons results in a localization precision of ∼0.6 nm, about 4 times better than typical resolution obtained by localization of dye molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.