Abstract

Abstract Single bit failures are the dominant failure mode for SRAM 6T bit cell memory devices. The analysis of failing single bits is aided by the fact that the mechanism is localized to the failing 6T bit cell. After electrically analyzing numerous failing bits, it was observed that failing bit cells were consistently producing specific electrical signatures (current-voltage curves). To help identify subtle bit cell failure mechanisms, this paper discusses an MCSpice program which was needed to simulate a 6T SRAM bit cell and the electrical analysis. It presents four case studies that show how MCSpice modeling of defective 6T SRAM bit cells was successfully used to identify subtle defect types (opens or shorts) and locations within the failing cell. The use of an MCSpice simulation and the appropriate physical analysis of defective bit cells resulted in a >90% success rate for finding failure mechanisms on yield and process certification programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.