Abstract

In a crude oil tank farm, a fire in a large crude oil storage tank can spread to its neighbouring tanks due to thermal radiation causing wall rupture. To better understand the thermal radiation of tank fires and the thermal response of their neighbouring tanks, a semi-empirical radiation model is proposed in this paper. The model takes into account the smoke generation and its effect in reducing thermal radiation, as well as the variation of flame temperature and emissivity along the flame axis. Compared with existing models, the model is able to predict the radiant heat flux of the flame more accurately, and this advantage becomes more pronounced as the diameter of the pool fire increases.Using the improved model, the effect of different crude oil contents on the thermal response and failure time of the storage tank under the action of thermal radiation was innovatively explored by numerical simulation. An in-depth analysis of the failure time was performed, and an empirical equation was derived to provide a reference for fire emergency management of large storage tanks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call