Abstract

In the last few decades, molecular imprinting technology went through a spectacular evolution becoming a well-established tool for the synthesis of highly selective biomimetic molecular recognition platforms. Nevertheless, there is still room for advancement in the molecular imprinting of highly polar chiral compounds. The aim of the present work was to investigate the favorable kosmotropic effect of a ternary complex involving a polar chiral template (eutomer of atenolol) and a functional monomer, bridged by a central metal ion through well-defined, spatially directional coordinate bonds. The efficiency of the chiral molecular recognition was systematically assessed on polymers obtained both by non-covalent and metal-mediated molecular imprinting. The influence on the chromatographic retention and enantioselectivity of different experimental variables (functional monomers, cross-linkers, chaotropic agents, metal ions, porogenic systems, etc.) were studied on both slurry packed and monolithic HPLC columns. Deliberate changes in the imprinting and rebinding (chromatographic) processes, along with additional thermodynamic studies shed light on the particularities of the molecular recognition mechanism. The best performing polymer in terms of enantioselectivity (α = 1.60) was achieved using 4-vinyl pyridine as functional monomer and secondary ligand for the Co(II)-mediated imprinting of S-atenolol in the presence of EDMA as cross-linker in a porogenic mixture of [BMIM][BF4]:DMF:DMSO = 10:1:5, v/v/v.

Highlights

  • Biological or synthetic receptors selectively recognize their target chemicals based on a combination of weak, short-ranged intermolecular interactions, such as hydrogen bonding, π-π interactions and van der Waals forces; and their selectivity being further refined by additional repulsive steric confinements

  • In order to engage a more rational approach in selecting the appropriate metal ion, functional monomer, molar ratio and porogenic solvent to be tested for subsequent molecular imprinting, UV-Vis spectroscopy provided a simple, fast, cost-effective and relatively straightforward instrumental method which is adjustable to small sample volumes for assessing the formation of the ternary complex

  • Atenolol is a hydrophilic drug, and molecular imprinting in polar and/or aqueous phases is difficult for traditional molecular imprinting methods based on non-covalent hydrogen bonding or electrostatic complexes between monomers and template, due to disruption of the complex by the polar/aqueous porogenic solvent

Read more

Summary

Introduction

Biological or synthetic receptors selectively recognize their target chemicals based on a combination of weak, short-ranged intermolecular interactions, such as hydrogen bonding, π-π interactions and van der Waals forces; and their selectivity being further refined by additional repulsive steric confinements. Imprinted polymers (MIPs) able to mimic natural receptors, offer tailored selectivity towards target molecules and better chemical and thermal stability in a simple and cost-effective manner [1]. Differentiation between the chiral forms of a molecule (chiral discrimination) is considered the supreme form of molecular recognition. The needed stereospecific features of MIPs are acquired through the process of non-covalent molecular imprinting using a variety of functional monomers, cross-linkers and porogenic solvents. Even though over the last few decades MIPs have become a well-established analytical tool for the selective recognition and analysis of small molecules, there is still some room for advancement in the molecular imprinting of highly polar compounds and biomacromolecules

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.