Abstract
Molecular imprinting technology has become an interesting research area to the preparation of specific sorbent material for environmental and occupational sample preparation techniques (1). In the molecular imprinting technology, specific binding sites have been formed in polymeric matrix, which often have an affinity and selectivity similar to antibody-antigen systems (2). In molecular imprinted technology, functional monomers are arranged in a complementary configuration around a template molecule, then, cross-linker and solvent are also added and the mixture is treated to give a porous material containing nono-sized binding sites. After extraction of the template molecule by washing, vacant imprinted sites will be left in polymer, which are available for rebinding of the template or its structural analogue (3). The stability, convention of preparation and low cost of these materials make them particularly attractive (4). These synthetic materials have been used for capillary electrochromatography (5), chromatography columns (6), sensors (7), and catalyze system (8). Depending on the molecular imprinting approach, different experimental variables such as the type and amounts of functional monomers, porogenic solvent, initiator, monomer to cross-linker ratio, temperature, and etc may alter the properties of the final polymeric materials. In this work, chemometric approach based on Central Composite Design (CCD) was used to design the experiments as well as to find the optimum conditions for preparing appropriate diazinon molecularly imprinted polymer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.