Abstract
This paper describes the degradation and recovery characteristics of SiGe pMOSFETs with a high-k/metal gate stack under negative-bias temperature instability (NBTI) stress. The threshold voltage instability (ΔVth) of SiGe pMOSFETs shows an increased percentage of recovery (R) as well as lower degradation than those of control Si pMOSFETs. It is found that the recovery characteristics of SiGe and Si pMOSFETs have similar dependencies on various stress conditions, and the increased R of SiGe pMOSFETs is mainly attributed to their lower degradation characteristic. Under real operating conditions, most of the ΔVth caused by hole trapping would be rapidly recovered through a fast recovery process, and newly-generated interface traps during the stress would determine the degradation level of Vth. The SiGe pMOSFETs show lower stress-induced interface traps; thus, they would display more reliable NBTI characteristics than Si pMOSFETs under real operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.