Abstract
The manipulator robot on the humanoid robot has functioned as an arm to grasp objects. The end-effector position of the robot is must first be known to perform the grasping task. Therefore, using the kinematics solution to find the robot end-effector position in the Cartesian space. This research paper presents the inverse kinematics of the 7-DOF T-FLoW humanoid robot manipulator using the Improved Damped Least Squares method with joint limits to avoid mechanical limitations. Forward Kinematics with the Homogeneous Transformation Matrix is used in the solution to find the current position of the end-effector in the Cartesian space. This research using the DLS method because it can avoid kinematic singularities and performs better than pseudoinverse based formulations. The experiment results show that the improved solution is more robust in performing joint limitation with a success rate of 100% and generating more natural motion than the original DLS.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have