Abstract

Industries are moving towards automation looking for application of robotics for performing flexible machining operations with high accuracy and precision. Industries require such robotic configuration which covers multiple domain within a single robotic system. The current work proposes for such robotic configurations to achieve such flexible 360° machining operations such as drilling. A three-dimensional computer aided design of the 5DOF robot manipulator robotic structure is done with the help of SOLIDWORKS software and it is visualized using RoboAnalyzer and then is fabricated accordingly. Kinematic analyzes such as forward kinematics and reverse kinematics of 5DOF robot manipulator with five revolute joints of proposed model are represented in a simplified manner. The forward kinematics are developed from Denavit-Hartenberg parameters and homogenous transformation matrix. The inverse kinematics are further obtained using algebraic solution method. The workspace is shown for the proposed robotic configurations from RoboAnalyzer software. The path planning is created and evaluated for the desired orientation and position of end effector manipulator. The calculation for the static torque is done. Finally, the results of kinematic analysis are validated with the help of RoboAnalyzer and MATLAB-Simulink to obtain desired output.KeywordsRoboticsForward and inverse kinematicsSOLIDWORKSMathematical modellingDH parameterTrajectoryRoboAnalyzerRange of motion (ROM)Drilling robotMATLAB-Simulink

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.