Abstract

We present a new semilocal convergence analysis for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these methods in cases not covered in earlier studies. The advantages of our approach include a more precise convergence analysis under the same computational cost on the Lipschitz constants involved. Applications are also given in this study to show that our estimates on the distances involved are tighter than the older ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.