Abstract

We present a new semi-local convergence analysis for Newton-like methods in order to approximate a locally unique solution of a nonlinear equation containing a non-differentiable term in a Banach space setting. The new idea uses more precise convergence domains. This way the new sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, are also provided in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.