Abstract

AbstractIn this paper, we present and study a stopping criteria based on a priori error estimate for nonlinear variational problems. We show that for nonlinear variational problems, the a priori error estimate is divided into two sub errors namely: the discretization error and the linearization error. We then used that representation to devise a stopping criteria that help to reduce the computational time. The methodology is applied to three problems and the numerical results demonstrate the superiority of the new approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.