Abstract
This paper proposes a reversible data hiding (RDH) scheme for images with an improved convolutional neural network (CNN) predictor (ICNNP) that consists of three modules for feature extraction, pixel prediction, and complexity prediction, respectively. Due to predicting the complexity of each pixel with the ICNNP during the embedding process, the proposed scheme can achieve superior performance compared to a CNNP-based scheme. Specifically, an input image is first split into two sub-images, i.e., a “Circle” sub-image and a “Square” sub-image. Meanwhile, each sub-image is applied to predict another one with the ICNNP. Then, the prediction errors of pixels are sorted based on the predicted pixel complexities. In light of this, some sorted prediction errors with less complexity are selected to be efficiently applied for low-distortion data embedding with a traditional histogram-shifting technique. Experimental results show that the proposed ICNNP can achieve better rate-distortion performance than the CNNP, demonstrating its effectiveness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have