Abstract
Traditional artificial intelligence and computer-aided course scheduling schemes can no longer meet the increasing demands caused by the informatization of teaching management in colleges and universities. To address this problem, this study designed an improved adaptive genetic algorithm that is based on hard and soft constraints for course scheduling. First, the mathematical model of the genetic algorithm was established. The combination of time, teacher, and course number was regarded as the gene coding. The weekly course schedule of each class was a chromosome, and the course schedule of the entire school was the initial population. The fitness was designed according to the priority of each class, curriculum dispersion, and teacher satisfaction. Local columns between individuals were selected through the roulette principle for a variation of crossover and random columns. Iterative calculation was implemented on the basis of the default mutation and crossover rates to study the optimal course scheduling scheme. Experimental results demonstrate that the improved adaptive genetic algorithm is superior to the original genetic algorithm. When the number of iterations is 150, population evolution is optimal and the fitness does not increase. When the population size is 150 classes, the average scheduling time is the shortest. The basic, adaptive, and improved adaptive genetic algorithms are compared in terms of the number of average iterations required for convergence, maximum individual fitness, and average individual fitness. Comparison results show that the improved adaptive genetic algorithm is superior to the two other algorithms. This study provides references for the model building and evaluation of course scheduling in colleges and universities.
Highlights
Course times and places and teachers should be arranged every semester in colleges and universities according to the teaching plan and curriculum structure
Many rules are observed in course scheduling, which should consider such factors as the times and places of instruction and the teachers
Course scheduling in most colleges and universities is presently manually implemented by iJET ‒ Vol 13, No 6, 2018
Summary
Course times and places and teachers should be arranged every semester in colleges and universities according to the teaching plan and curriculum structure. Many rules are observed in course scheduling, which should consider such factors as the times and places of instruction and the teachers. The reasonable allocation of these factors forms a multi-constraint professional resource optimization problem. Course scheduling in most colleges and universities is presently manually implemented by iJET ‒ Vol 13, No 6, 2018. Teaching staff, who encounter numerous difficulties because of the large number of courses and teachers, required instruction places, and multiple constraints[1][2]. To address the general requirements of colleges and universities, this work regards each factor in the course scheduling problem as inputs into a genetic algorithm, which is a multi-objective optimization problem with constraints. The genetic algorithm can realize global optimization and parallel processing to optimize the configuration of various resources[3][4]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have