Abstract

The rate at which dislocations nucleate from spherical voids subjected to shear loading is predicted from atomistic simulation. By employing the latest version of the finite temperature string method, a variational transition state theory approach can be utilized, enabling atomistic predictions at ordinary laboratory time scales, loads, and temperatures. The simulation results, in conjunction with a continuum model, show that the deformation and growth of voids in Al are not likely to occur via dislocation nucleation under typical loadings regardless of void size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.