Abstract

Titanium phosphate (TiP) exhibits preferable sorption toward lead ion in the presence of competing calcium ions at high levels, however, it is present as fine or ultrafine particles and cannot be directly employed in fixed-bed or any flow-through systems due to the excessive pressure drop and poor mechanical strength. In the present study a new hybrid sorbent TiP-001 was fabricated by impregnating titanium phosphate (TiP) nanoparticles onto a strongly acidic cation exchanger D-001 for enhanced lead removal from waters. D-001 was selected as a host material mainly because of the Donnan membrane effect resulting from the immobilized sulfonic acid groups bound on the exchanger matrix, which would enhance permeation of the target metal cation prior to effective sequestration. TiP-001 was characterized by transmission electron micrograph (TEM), X-ray diffraction (XRD), and pH-titration. Batch and column sorption onto TiP-001 was assayed to evaluate its performance as compared to the host exchanger D-001. Lead sorption onto TiP-001 is a pH-dependent process due to the ion-exchange nature, and its sorption kinetics follows the pseudo-second-order model well. Compared to D-001, TiP-001 displays highly selective lead sorption in the presence of competing calcium cations at concentration of several orders higher than the target metal. Fixed-bed sorption of a synthetic feeding solution indicates that lead retention by TiP-001 results in a conspicuous decrease of this toxic metal from 0.50 to below 0.010 mg/L (drinking water standard recommended by WHO). Moreover, its feasible regeneration by dilute HCl solution also favors TiP-001 to be a feasible sorbent for enhanced lead removal from water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.