Abstract

Academic and industrial studies on smart systems, which have entered all areas of our lives, continue to their rapid developments along with gaining momentum with Industry 4.0. Especially, many of the different production devices with their molding, printing, shaping, and cutting capabilities have a certain level of automation. They work together with the material information they process, and the compatibility with other machines to make the whole production system work effectively and properly. While the abundance of data acquired is an important source for better analytics, obtaining information for business purposes from this data and helping decision support systems is the most important task expected from Information Technology and Systems in the organization. In this paper, we propose an FPGA-based edge information infrastructure to evaluate critical data from the production devices, distributed sensors, and other ISs in any industrial environment to increase the utilization and performance of the total machinery. This study helps the predictive maintenance decision for a sample plastic injection molding device according to our industrial scenario. A sample data set downloaded from the Internet with the factors like speed, vibration, and the temperature was used. An FPGA (Field Programmable Gate Array) design that will run the necessary ML algorithms with the sensor data and existing information system inputs (ERP, MES) has been carried out by using Xilinx Design Tools and Vitis IDE 2020.2. In this study, the ANFIS (Adaptive Network-Based Fuzzy Inference System) system, which is an approach consisting of the integration of artificial neural networks and Fuzzy Logic, has been chosen as an Artificial Intelligence application. The estimation results obtained were evaluated over the accuracy rates achieved in similar studies in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.