Abstract
In this paper, we introduce some implicit iterative algorithms for finding a common element of the set of fixed points of an asymptotically nonexpansive mapping in the intermediate sense and the set of solutions of the variational inequality problem for a monotone, Lipschitz-continuous mapping. These implicit iterative algorithms are based on two well-known methods: extragradient and approximate proximal methods. We obtain some weak convergence theorems for these implicit iterative algorithms. Based on these theorems, we also construct some implicit iterative processes for finding a common fixed point of two mappings, such that one of these two mappings is taken from the more general class of Lipschitz pseudocontractive mappings and the other mapping is asymptotically nonexpansive.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have