Abstract
This paper studies a general vector optimization problem of finding weakly efficient points for mappings from Hilbert spaces to arbitrary Banach spaces, where the latter are partially ordered by some closed, convex, and pointed cones with nonempty interiors. To find solutions of this vector optimization problem, we introduce an auxiliary variational inequality problem for a monotone and Lipschitz continuous mapping. The approximate proximal method in vector optimization is extended to develop a hybrid approximate proximal method for the general vector optimization problem under consideration by combining an extragradient method to find a solution of the variational inequality problem and an approximate proximal point method for finding a root of a maximal monotone operator. In this hybrid approximate proximal method, the subproblems consist of finding approximate solutions to the variational inequality problem for monotone and Lipschitz continuous mapping, and then finding weakly efficient points for a suitable regularization of the original mapping. We present both absolute and relative versions of our hybrid algorithm in which the subproblems are solved only approximately. The weak convergence of the generated sequence to a weak efficient point is established under quite mild assumptions. In addition, we develop some extensions of our hybrid algorithms for vector optimization by using Bregman-type functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.