Abstract
This paper describes the implications of bias temperature instability (BTI)-induced time-dependent threshold voltage distributions on the performance and yield estimation of digital circuits. The statistical distributions encompassing both time-zero and time-dependent variability and their correlations are discussed. The impact of using normally distributed threshold voltages, imposed by state-of-the-art design approaches, is contrasted with our defect-centric approach. Extensive Monte Carlo simulation results are shown for static random access memory cell and ring oscillator structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.