Abstract

Hepatocellular carcinoma (HCC) is a global health problem with regional differences in epidemiological statistics. Co-assembling the drug nanoparticles and targeting moieties could improve the therapeutic delivery of anti-cancer drugs. In this attempt, we tracked the extrinsic and intrinsic apoptotic pathways in HCC cells using viramidine (VRM)-loaded aptamer (APT) nanoparticles. In these NPs, both APT and VRM act as targeted ligands/drugs to HCC cells. The NPs were characterized using TEM, ESI–MS, FTIR, and 1H NMR. The results showed uniform particles with round and smooth shapes on the nano-scale. SRB-based cytotoxicity was performed and IC50 values were measured for HCC versus normal cells upon the proposed treatments. The flow cytometry technique was applied to determine apoptosis, then confirmed using genetic and protein analyses. In addition, nitric oxide (NO) and its enzyme (iNOS) were analyzed to examine the effect of reactive nitrogen species (RNS) on apoptosis induction. The present findings indicated that Huh-7 cells were more sensitive to APT-VRM NPs than HepG2 cells, recording the lowest IC50 values (11.23 ± 0.23 µM and 16.69 ± 1.12 µM), as well as the highest significant increase in the apoptotic cells (61.5% and 42%), respectively. Intriguingely, normal BHK-21 cells recorded undetectable IC50 values in the applied NPs, confirming their targeted delivery ability. The genetic expression and protein levels of c-FLIP, Bcl-2, and TNF-α were down-regulated, while FADD, caspase 8, caspase 3, caspase 9, and Bax were up-regulated upon treatment with APT-VRM NPs. The prepared VRM NPs labeled with APT could significantly elevate NO via activation of iNOS. In conclusion, APT-VRM NPs bioconjugate interferes with HCC cells through NO-mediated extrinsic and intrinsic apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call