Abstract

The underlying mechanism of the antitumor activity of Huaier polysaccharide (HP) remains to be explored. The present study aimed to investigate the inhibitory effect of HP on hepatocellular carcinoma (HCC) cells, and to explore the possible mechanisms of its anticancer effect. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, while apoptotic nuclear changes were observed using Hoechst 33258 staining. The distribution of cell cycle and apoptosis were analyzed by flow cytometry, and western blotting was used to test the apoptotic pathways. Apoptosis and mitogen-activated protein kinase (MAPK) inhibitors were used to investigate the mechanism of apoptosis. HP triggered cell cycle arrest and apoptosis in HepG2 and Huh7 cells. Both the extrinsic and intrinsic apoptotic pathways were activated after HP treatment. Furthermore, HP enhanced the three major MAPK pathways (extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38 MAPK) and inhibited the AKT/mechanistic target of rapamycin signaling pathway in HCC cells. Notably, the inactivation of p38 MAPK impaired the HP-induced cell death. HP exerted its antitumor effect on HCC cells through the regulation of the expression of the apoptosis-related proteins B-cell lymphoma (Bcl)-2, Bcl-2-associated X protein and survivin. The present study provides evidence that HP induces apoptosis in HCC cells and demonstrated the role of p38 MAPK in HP-triggered cancer cell death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call