Abstract

This research work presents analysis of Modified Sarsa learning algorithm. Modified Sarsa algorithm. State-Action-Reward-State-Action (SARSA) is an technique for learning a Markov decision process (MDP) strategy, used in for reinforcement learning int the field of artificial intelligence (AI) and machine learning (ML). The Modified SARSA Algorithm makes better actions to get better rewards. Experiment are conducted to evaluate the performace for each agent individually. For result comparison among different agent, the same statistics were collected. This work considered varied kind of agents in different level of architecture for experiment analysis. The Fungus world testbed has been considered for experiment which is has been implemented using SwI-Prolog 5.4.6. The fixed obstructs tend to be more versatile, to make a location that is specific to Fungus world testbed environment. The various parameters are introduced in an environment to test a agent’s performance. This modified SARSA learning algorithm can be more suitable in EMCAP architecture. The experiments are conducted the modified SARSA Learning system gets more rewards compare to existing SARSA algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.