Abstract
Free Space Optical (FSO) communication is a quickly developing technology that is designed to handle high data rates while maintaining a good quality factor (Q-factor). Many novel techniques have been implemented to cope with atmospheric attenuating factors, such as fog and rain. Here, we have introduced circular polarization shift keying (C-PolSK) modulation to produce a stable and uniform light beam. The plane of polarized light keeps rotating along with the propagation vector, which helps reduce phase variations and cross-channel effects. C-PolSK provides higher penetrating power and attenuation resistance over linear polarization shift keying (L-PolSK). Two different C-PolSK models have been proposed and graphical comparisons, relying on such parameters as Q-factor, transmission distance and inputoutput power, have been made. The cases of moderate fog and rain attenuation are taken to verify the model’s efficiency. Polarized light is split into two orthogonal components and then modulated using the Mach-Zehnder modulator. One of the models also employs the principle of orthogonal differential phase shifting. Eye diagrams have been provided to verify the bit error rate (BER). The orthogonal differential phase shifted C-PolSK model proves to be the most suitable implementation prototype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Telecommunications and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.