Abstract

Abstract Understanding the impact of postdam climate feedbacks, resulting from land use/land cover (LULC) variability, on modification of extreme precipitation (EP) remains a challenge for a twenty-first-century approach to dam design and operation. In this study, the Regional Atmospheric Modeling System (RAMS, version 6.0) was used, involving a number of predefined LULC scenarios to address the important question regarding dams and their impoundments: How sensitive are the hydroclimatology and terrain features of a region in modulating the postdam response of climate feedbacks to EP? The study region covered the Owyhee Dam/Reservoir on the Owyhee River watershed (ORW), located in eastern Oregon. A systematic perturbation of the relative humidity in the initial and boundary condition of the model was carried out to simulate EP. Among the different LULC scenarios used in the simulation over the ORW, irrigation expansion in the postdam era resulted in an increase in EP up to 6% in the 72-h precipitation total. The contribution of the reservoir on EP added 8% to the 72-h total when compared to the predam LULC conditions. To address the science question, a previously completed investigation on the Folsom Dam [American River watershed (ARW)] in California was compared with the ORW findings on the basis of contrasting differences in hydroclimatology and terrain features. The results indicate that the postdam LULC change scenarios impact EP of ORW (Owyhee Dam) much greater than the EP of the ARW (Folsom Dam) because of its semiarid climate and flat terrain. EP was less sensitive to LULC changes on the windward side of the mountainous terrain of ARW as compared to the leeward side of the flat terrain of ORW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call