Abstract

The purpose of this study is to explore the potential water, CO2 and NOx emission, and cost savings that the deployment of decentralized water and energy technologies within two urban growth scenarios can achieve. We assess the effectiveness of urban growth, technological, and political strategies to reduce these burdens in the 13-county Atlanta metropolitan region. The urban growth between 2005 and 2030 was modeled for a business as usual (BAU) scenario and a more compact growth (MCG) scenario. We considered combined cooling, heating and power (CCHP) systems using microturbines for our decentralized energy technology and rooftop rainwater harvesting and low flow fixtures for the decentralized water technologies. Decentralized water and energy technologies had more of an impact in reducing the CO2 and NOx emissions and water withdrawal and consumption than an MCG growth scenario (which does not consider energy for transit). Decentralized energy can reduce the CO2 and NOx emissions by 8% and 63%, respectively. Decentralized energy and water technologies can reduce the water withdrawal and consumption in the MCG scenario by 49% and 50% respectively. Installing CCHP systems on both the existing and new building stocks with a net metering policy could reduce the CO2, NOx, and water consumption by 50%, 90%, and 75% respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call