Abstract

Deep learning was developed as a realistic artificial intelligence technique that takes in numerous layers of information and produces the best results in various classes. Deep learning has demonstrated excellent performance in several areas, particularly picture grouping, division, and recognition. The convolutional neural network (CNN) is one of the algorithms that relies on deep learning in its work. It has proven its effectiveness in classifying images with high efficiency in medical images and their diagnoses, face recognition, and other different fields. In this paper, the focus was on images to alert new researchers to their effects on the performance of CNN in terms of the number of classes that existed within the database, in addition to the impact of incorrect classification of images by the source on the classification result and the necessity of adopting reliable and correct sources of data to avoid inaccurate results. A group of face images has been used, and three experiments on them were conducted using all existing classes with reduction. The results showed a significant improvement in the performance of the algorithm whenever the number of classes was reduced. The best result was when only two classes were chosen for classification, reaching a validation accuracy of 85%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.