Abstract

To develop a convolutional neural network (CNN) to triage head CT (HCT) studies and investigate the effect of upstream medical image processing on the CNN's performance. A total of 9776 HCT studies were retrospectively collected from 2001 through 2014, and a CNN was trained to triage them as normal or abnormal. CNN performance was evaluated on a held-out test set, assessing triage performance and sensitivity to 20 disorders to assess differential model performance, with 7856 CT studies in the training set, 936 in the validation set, and 984 in the test set. This CNN was used to understand how the upstream imaging chain affects CNN performance by evaluating performance after altering three variables: image acquisition by reducing the number of x-ray projections, image reconstruction by inputting sinogram data into the CNN, and image preprocessing. To evaluate performance, the DeLong test was used to assess differences in the area under the receiver operating characteristic curve (AUROC), and the McNemar test was used to compare sensitivities. The CNN achieved a mean AUROC of 0.84 (95% CI: 0.83, 0.84) in discriminating normal and abnormal HCT studies. The number of x-ray projections could be reduced by 16 times and the raw sensor data could be input into the CNN with no statistically significant difference in classification performance. Additionally, CT windowing consistently improved CNN performance, increasing the mean triage AUROC by 0.07 points. A CNN was developed to triage HCT studies, which may help streamline image evaluation, and the means by which upstream image acquisition, reconstruction, and preprocessing affect downstream CNN performance was investigated, bringing focus to this important part of the imaging chain.Keywords Head CT, Automated Triage, Deep Learning, Sinogram, DatasetSupplemental material is available for this article.© RSNA, 2021.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call