Abstract

Throughfall deposition is an important pathway via which particles, aerosols and gases can move from the atmosphere to the forest floor, which can greatly impact forest biodiversity and functioning. Although throughfall deposition biochemistry has been well studied in forest ecosystems, less is known about how throughfall deposition is modified by tree species diversity. To disentangle the effects of tree species identity and diversity on throughfall deposition, we installed rain gauges in a 10-year-old tree diversity experiment. With these rain gauges, we monitored throughfall biweekly, and performed chemical analyses monthly for all the major ions (Na+, Cl−, SO42−-S, K+, Ca2+, Mg2+, PO43−-P, NO3−-N and NH4+-N), for a period of one year. Based on these data, we analysed species identity (i.e. whether throughfall deposition depended on the tree species present in the overstorey), and diversity effects (i.e. whether throughfall deposition depended on tree species richness). We confirmed species identity effects on throughfall deposition. Presence of pine led to higher throughfall deposition of inorganic nitrogen, and lower amounts of phosphorus, calcium and magnesium reaching the forest floor. Additionally, species characteristics and stand structural characteristics, i.e. basal area and canopy cover, emerged as key factors driving throughfall deposition of sodium, chloride, nitrate, sulphate and potassium. Tree species diversity effects on throughfall deposition were also present, mostly via increased basal area and canopy cover, leading to increased throughfall deposition of inorganic nitrogen, sulphate, chloride, sodium and potassium. Our findings thus suggest that tree species diversity enhances throughfall deposition of most ions that we analysed, potentially increasing nutrient availability for below-canopy plant communities. Given that inorganic nitrogen and sulphur are major atmospheric pollutants, increased deposition in mixed plots might affect ecosystem functioning. Further research will be needed to determine the extent of this impact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call