Abstract
We theoretically evaluate changes in the magnetic potential arising from the magnetic field near superconducting thin films. An example of an atom chip based on a three-wire configuration has been simulated in the superconducting and the normal conducting state. Inhomogeneous current densities within the superconducting wires were calculated using an energy-minimization routine based on the London theory. The Meissner effect causes changes to both trap position and oscillation frequencies at short distances from the superconducting surface. Superconducting wires produce much shallower microtraps than normal conducting wires. The results presented in this paper demonstrate the importance of taking the Meissner effect into account when designing and carrying out experiments on magnetically trapped neutral atoms near superconducting surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.